9 research outputs found

    Metamateriales para elementos radiantes en comunicaciones inalámbricas

    Full text link
    [ES] En este trabajo mostramos mediante un análisis numérico como un cristal fotónico puede mimetizar el comportamiento de un metamaterial con un índice de refracción negativo igual a -1. Una resolución sublambda se observa en la imagen no solo para campo cercano sino también para campo lejano. La excitación de estados de superficie con simetría par puede explicar este comportamiento. También presentamos cálculos numéricos de la transmisión a través de arrays de agujeros en metal. Observamos que las frecuencias, para las cuales se consigue transmisión extraordinaria, concuerdan bastante con aquellas a las que se excita un plasmón de superficie. Por tanto, sugerimos que los plasmones de superficie juegan un papel importante en la transmisión extraordinaria.[EN] In this work, we show by a numerical analysis how a photonic crystal can mimic the behaviour of a metamaterial with a refractive index equal to -1. Subwavelength resolution is observed at the image not only in the near-field but also in the far-field. The excitation of surface states with even symmetry can explain this behaviour. In addition, we present numerical calculations for the transmission through metallic hole arrays. We observed that the frequencies, for which extraordinary transmission is achieved, are in good agreement with that at which surface plasmon are excited. Therefore, we suggest that the surface plasmons play an important role in the extraordinary transmissionOrtuño Molinero, R. (2007). Metamateriales para elementos radiantes en comunicaciones inalámbricas. http://hdl.handle.net/10251/12538Archivo delegad

    Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators

    Full text link
    The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the transmission spectrum of the waveguide. Here we show via numerical simulations that narrower and steeper Fano-like resonances can be obtained by asymmetrically coupling in the near field a larger nanostrip supporting an electric quadrupole in the frequency regime of interest to the original, shorter nanostrip. Under certain conditions, the spectral response corresponding to the electromagnetically induced transparency phenomenon is observed. We suggest that this hybrid plasmonic photonic approach could be especially relevant for sensing or all-optical switching applications in a photonic integrated platform such as silicon photonics.RO acknowledges support from Generalitat Valenciana through the VALi+d postdoctoral program (exp APOSTD/2014/004). AM acknowledges funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and NANOMET PLUS-PROMETEOII/2014/034 (Conselleria d'Educacio, Cultura i Esport).Ortuño Molinero, R.; Cortijo-Munuera, M.; Martínez Abietar, AJ. (2017). Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. Journal of Optics. 19(2):025003-1-025003-7. https://doi.org/10.1088/2040-8986/aa51e0S025003-1025003-7192Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630Zijlstra, P., Paulo, P. M. R., & Orrit, M. (2012). Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnology, 7(6), 379-382. doi:10.1038/nnano.2012.51Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244Husnik, M., Niegemann, J., Busch, K., & Wegener, M. (2013). Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 38(22), 4597. doi:10.1364/ol.38.004597Fan, P., Yu, Z., Fan, S., & Brongersma, M. L. (2014). Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 13(5), 471-475. doi:10.1038/nmat3927Rodríguez-Fortuño, F. J., Martínez-Marco, M., Tomás-Navarro, B., Ortuño, R., Martí, J., Martínez, A., & Rodríguez-Cantó, P. J. (2011). Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 98(13), 133118. doi:10.1063/1.3558916Lorente-Crespo, M., Wang, L., Ortuño, R., García-Meca, C., Ekinci, Y., & Martínez, A. (2013). Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings. Nano Letters, 13(6), 2654-2661. doi:10.1021/nl400798sRodríguez-Fortuño, F. J., Espinosa-Soria, A., & Martínez, A. (2016). Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics, 18(12), 123001. doi:10.1088/2040-8978/18/12/123001Lipson, M. (2005). Guiding, modulating, and emitting light on Silicon-challenges and opportunities. Journal of Lightwave Technology, 23(12), 4222-4238. doi:10.1109/jlt.2005.858225Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., … Nedeljkovic, M. (2016). Roadmap on silicon photonics. Journal of Optics, 18(7), 073003. doi:10.1088/2040-8978/18/7/073003Alepuz-Benache, I., García-Meca, C., Rodríguez-Fortuño, F. J., Ortuño, R., Lorente-Crespo, M., Griol, A., & Martínez, A. (2012). Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide. Nanophotonics IV. doi:10.1117/12.922300Bernal Arango, F., Kwadrin, A., & Koenderink, A. F. (2012). Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano, 6(11), 10156-10167. doi:10.1021/nn303907rFévrier, M., Gogol, P., Aassime, A., Mégy, R., Delacour, C., Chelnokov, A., … Dagens, B. (2012). Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide. Nano Letters, 12(2), 1032-1037. doi:10.1021/nl204265fChamanzar, M., Xia, Z., Yegnanarayanan, S., & Adibi, A. (2013). Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Optics Express, 21(26), 32086. doi:10.1364/oe.21.032086Peyskens, F., Subramanian, A. Z., Neutens, P., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 23(3), 3088. doi:10.1364/oe.23.003088Peyskens, F., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform. ACS Photonics, 3(1), 102-108. doi:10.1021/acsphotonics.5b00487Castro-Lopez, M., de Sousa, N., Garcia-Martin, A., Gardes, F. Y., & Sapienza, R. (2015). Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. Optics Express, 23(22), 28108. doi:10.1364/oe.23.028108Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V. V., Dorpe, P. V., … Maier, S. A. (2009). Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 9(4), 1663-1667. doi:10.1021/nl9001876Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., & Chong, C. T. (2010). The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 9(9), 707-715. doi:10.1038/nmat2810Shafiei, F., Monticone, F., Le, K. Q., Liu, X.-X., Hartsfield, T., Alù, A., & Li, X. (2013). A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotechnology, 8(2), 95-99. doi:10.1038/nnano.2012.249Yang, Z.-J., Zhang, Z.-S., Zhang, L.-H., Li, Q.-Q., Hao, Z.-H., & Wang, Q.-Q. (2011). Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Optics Letters, 36(9), 1542. doi:10.1364/ol.36.001542Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., & Giessen, H. (2009). Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 8(9), 758-762. doi:10.1038/nmat2495Harris, S. E. (1997). Electromagnetically Induced Transparency. Physics Today, 50(7), 36-42. doi:10.1063/1.881806Wu, C., Khanikaev, A. B., Adato, R., Arju, N., Yanik, A. A., Altug, H., & Shvets, G. (2011). Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11(1), 69-75. doi:10.1038/nmat3161Chang, W.-S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, S., Nordlander, P., … Link, S. (2012). A Plasmonic Fano Switch. Nano Letters, 12(9), 4977-4982. doi:10.1021/nl302610vEspinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841Amin, M., Farhat, M., & Baǧcı, H. (2013). A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Scientific Reports, 3(1). doi:10.1038/srep02105Knight, M. W., Wu, Y., Lassiter, J. B., Nordlander, P., & Halas, N. J. (2009). Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Letters, 9(5), 2188-2192. doi:10.1021/nl900945qValamanesh, M., Borensztein, Y., Langlois, C., & Lacaze, E. (2011). Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles. The Journal of Physical Chemistry C, 115(7), 2914-2922. doi:10.1021/jp1056495Berkovitch, N., Ginzburg, P., & Orenstein, M. (2012). Nano-plasmonic antennas in the near infrared regime. Journal of Physics: Condensed Matter, 24(7), 073202. doi:10.1088/0953-8984/24/7/073202Lu, H., Liu, X., Mao, D., & Wang, G. (2012). Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 37(18), 3780. doi:10.1364/ol.37.003780Chen, J., Sun, C., & Gong, Q. (2013). Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Optics Letters, 39(1), 52. doi:10.1364/ol.39.000052Binfeng, Y., Hu, G., Zhang, R., & Yiping, C. (2016). Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. Journal of Optics, 18(5), 055002. doi:10.1088/2040-8978/18/5/05500

    Neurometrics applied to banknote and security features design

    Get PDF
    El objetivo de este trabajo es presentar una metodología sobre la aplicación del neuroanálisis en el diseño de billetes y elementos de seguridad. Tradicionalmente, la evaluación de la percepción de los billetes se ha basado en respuestas explícitas de las personas, obtenidas a través de cuestionarios y entrevistas. Las medidas implícitas se refieren a métodos y técnicas capaces de capturar los procesos mentales implícitos de las personas. La neurociencia ha demostrado que la consciencia humana no interviene en la mayoría de los procesos cerebrales que regulan las emociones, actitudes, comportamientos y decisiones. Es decir, estos procesos implícitos son funciones cerebrales que se producen automáticamente y sin control consciente. La metodología sobre el neuroanálisis puede aplicarse al diseño de billetes y elementos de seguridad, y utilizarse como una herramienta de análisis eficaz para evaluar los procesos cognitivos de las personas, como el interés visual, la atención a ciertas áreas del billete, las emociones, la motivación, la carga mental para comprender el diseño y el nivel de estimulación. La metodología del neuroanálisis propuesta ofrece un criterio para tomar decisiones sobre qué diseños de billetes y elementos de seguridad tienen una configuración más adecuada para el público, basada en el seguimiento de procesos conscientes, usando medidas explícitas tradicionales, y procesos inconscientes, usando técnicas neurométricas. La metodología del neuroanálisis trata variables neurométricas cuantificables obtenidas del público al procesar eventos como el movimiento ocular, la fijación visual, la expresión facial, la variación del ritmo cardíaco, la conductancia de la piel, etc. La aplicación de un estudio de neuroanálisis se lleva a cabo con un grupo de personas representativo de la población para la que se realiza el diseño de un billete o los elementos de seguridad. En el estudio neurométrico se ofrece a los participantes muestras físicas adecuadamente preparadas para recoger las diferentes respuestas neurométricas de los participantes, que luego se procesan para sacar conclusiones.The aim of this paper is to present a methodology on the application of neuroanalysis to the design of banknotes and security features. Traditionally, evaluation of the perception of banknotes is based on explicit personal responses obtained through questionnaires and interviews. The implicit measures refer to methods and techniques capable of capturing people’s implicit mental processes. Neuroscience has shown that, in most brain processes regulating emotions, attitudes, behaviours and decisions, human consciousness does not intervene. That is to say, these implicit processes are brain functions that occur automatically and without conscious control. The methodology on neuroanalysis can be applied to the design of banknotes and security features, and used as an effective analysis tool to assess people’s cognitive processes, namely: visual interest, attention to certain areas of the banknote, emotions, motivation and the mental load to understand the design and level of stimulation. The proposed neuroanalysis methodology offers a criterion for making decisions about which banknote designs and security features have a more suitable configuration for the public. It is based on the monitoring of conscious processes, using traditional explicit measures, and unconscious processes, using neurometric techniques. The neuroanalysis methodology processes quantifiable neurometric variables obtained from the public when processing events, such as eye movement, sight fixation, facial expression, heart rate variation, skin conductance, etc. A neuroanalysis study is performed with a selected group of people representative of the population for which the design of a banknote or security features is made. In the neurometric study, suitably prepared physical samples are shown to the participants to collect their different neurometric responses, which are then processed to draw conclusions

    Full three-dimensional isotropic transformation media

    Get PDF
    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends.The authors acknowledge support from projects Consolider EMET (CSD2008-00066), TEC 2011-28664-C02-02 and GVA ACOMP/2013/013.García Meca, C.; Ortuño Molinero, R.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Full three-dimensional isotropic transformation media. New Journal of Physics. 16. https://doi.org/10.1088/1367-2630/16/2/02303016Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628Greenleaf, A., Kurylev, Y., Lassas, M., & Uhlmann, G. (2007). Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.183901Shalaev, V. M. (2008). PHYSICS: Transforming Light. Science, 322(5900), 384-386. doi:10.1126/science.1166079Chen, H., Chan, C. T., & Sheng, P. (2010). Transformation optics and metamaterials. Nature Materials, 9(5), 387-396. doi:10.1038/nmat2743Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009Norris, A. N., & Shuvalov, A. L. (2011). Elastic cloaking theory. Wave Motion, 48(6), 525-538. doi:10.1016/j.wavemoti.2011.03.002Zhang, S., Genov, D. A., Sun, C., & Zhang, X. (2008). Cloaking of Matter Waves. Physical Review Letters, 100(12). doi:10.1103/physrevlett.100.123002Guenneau, S., Amra, C., & Veynante, D. (2012). Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 20(7), 8207. doi:10.1364/oe.20.008207Landy, N. I., Kundtz, N., & Smith, D. R. (2010). Designing Three-Dimensional Transformation Optical Media Using Quasiconformal Coordinate Transformations. Physical Review Letters, 105(19). doi:10.1103/physrevlett.105.193902Urzhumov, Y., Landy, N., & Smith, D. R. (2012). Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. Journal of Applied Physics, 111(5), 053105. doi:10.1063/1.3691242Danner, A. J., Tyc, T., & Leonhardt, U. (2011). Controlling birefringence in dielectrics. Nature Photonics, 5(6), 357-359. doi:10.1038/nphoton.2011.53Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089Chen, H., & Zheng, B. (2012). Broadband polygonal invisibility cloak for visible light. Scientific Reports, 2(1). doi:10.1038/srep00255Landy, N., & Smith, D. R. (2012). A full-parameter unidirectional metamaterial cloak for microwaves. Nature Materials, 12(1), 25-28. doi:10.1038/nmat3476Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R., & Pendry, J. B. (2008). Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics and Nanostructures - Fundamentals and Applications, 6(1), 87-95. doi:10.1016/j.photonics.2007.07.013Rahm, M., Roberts, D. A., Pendry, J. B., & Smith, D. R. (2008). Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16(15), 11555. doi:10.1364/oe.16.011555Schmiele, M., Varma, V. S., Rockstuhl, C., & Lederer, F. (2010). Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81(3). doi:10.1103/physreva.81.033837García-Meca, C., Tung, M. M., Galán, J. V., Ortuño, R., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2011). Squeezing and expanding light without reflections via transformation optics. Optics Express, 19(4), 3562. doi:10.1364/oe.19.003562Liu, D., Gabrielli, L. H., Lipson, M., & Johnson, S. G. (2013). Transformation inverse design. Optics Express, 21(12), 14223. doi:10.1364/oe.21.014223(2008). ACM Transactions on Graphics, 27(3). doi:10.1145/1360612Lipman, Y., & Levin, D. (2010). Derivation and Analysis of Green Coordinates. Computational Methods and Function Theory, 10(1), 167-188. doi:10.1007/bf03321761Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308Paillé, G.-P., & Poulin, P. (2012). As-conformal-as-possible discrete volumetric mapping. Computers & Graphics, 36(5), 427-433. doi:10.1016/j.cag.2012.03.01

    Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface

    Get PDF
    “© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”A dual-band quarter-wave plate based on a modified extraordinary transmission hole array is numerically analyzed and experimentally demonstrated at terahertz frequencies. To control independently orthogonal polarizations, the original square holes are connected with vertical slits and their lateral straight sides are replaced by meander lines. This smart design enables dual-band operation with unprecedented fractional bandwidths in a compact structure. Considering a flattening deviation lower than 40% of the optimum value, a fractional bandwidth of 53.8% and 3.8% is theoretically obtained (16.8% and 2.9% in the experiment) at 1 and 2.2 THz, respectively. At these two frequencies, the structure is 0.13-lambda and 0.29-lambda thick, respectively. Given the compactness of the whole structure and the performance obtained, this quarter-wave plate is presented as a competitive device for the terahertz band.This work was supported by the Spanish Government through the Consolider Engineering Metamaterials under Contract CSD2008-00066 and Contract TEC2011-28664-C02.Torres, V.; Sánchez Losilla, N.; Etayo, D.; Ortuño Molinero, R.; Navarro-Cía, M.; Martínez Abietar, AJ.; Beruete, M. (2014). Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface. IEEE Photonics Technology Letters. 26(16):1679-1682. https://doi.org/10.1109/LPT.2014.2330860S16791682261

    High order standing-wave plasmon resonances in silver u-shaped nanowires

    Full text link
    Optical measurements of the transmission spectra through nanofabricated planar arrays of silver u-shaped nanowires on a silicon substrate resonating at infrared frequencies are performed. Good agreement with the numerically simulated surface plasmon standing wave resonances supported by the structures is found. Such resonances exhibit field enhancement and are able to provide magnetic and electric responses when used as the unit cell of a metamaterial. The magnetic excitation of the resonators using oblique incidence is shown to be drastically reduced by the existence of a high index substrate such as silicon. © 2012 American Institute of Physics.We acknowledge financial support from the Spanish MICINN under Contracts CONSOLIDER EMET CSD2008-00066 and TEC2011-28664-C02-02. F. J. Rodriguez-Fortuno acknowledges financial support from Grant FPI of GV.Rodríguez Fortuño, FJ.; Ortuño Molinero, R.; García Meca, C.; Martí Sendra, J.; Martínez Abietar, AJ. (2012). High order standing-wave plasmon resonances in silver u-shaped nanowires. Journal of Applied Physics. 112:103104-103104. https://doi.org/10.1063/1.4759444S103104103104112Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162Kawata, S., Inouye, Y., & Verma, P. (2009). Plasmonics for near-field nano-imaging and superlensing. Nature Photonics, 3(7), 388-394. doi:10.1038/nphoton.2009.111Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966Martínez, A., García-Meca, C., Ortuño, R., Rodríguez-Fortuño, F. J., & Martí, J. (2009). Metamaterials for optical security. Applied Physics Letters, 94(25), 251106. doi:10.1063/1.3152794Rodríguez-Fortuño, F. J., García-Meca, C., Ortuño, R., Martí, J., & Martínez, A. (2009). Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial. Physical Review B, 79(7). doi:10.1103/physrevb.79.075103Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501Johnson, N. P., Khokhar, A. Z., Chong, H. M. H., De La Rue, R. M., & McMeekin, S. (2006). Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon. Electronics Letters, 42(19), 1117. doi:10.1049/el:20062212Rockstuhl, C., Zentgraf, T., Guo, H., Liu, N., Etrich, C., Loa, I., … Giessen, H. (2006). Resonances of split-ring resonator metamaterials in the near infrared. Applied Physics B, 84(1-2), 219-227. doi:10.1007/s00340-006-2205-2Rockstuhl, C., Lederer, F., Etrich, C., Zentgraf, T., Kuhl, J., & Giessen, H. (2006). On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 14(19), 8827. doi:10.1364/oe.14.008827Sheridan, A. K., Clark, A. W., Glidle, A., Cooper, J. M., & Cumming, D. R. S. (2007). Multiple plasmon resonances from gold nanostructures. Applied Physics Letters, 90(14), 143105. doi:10.1063/1.2719161Chen, C.-Y., Wu, S.-C., & Yen, T.-J. (2008). Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Applied Physics Letters, 93(3), 034110. doi:10.1063/1.2957978Pfeiffer, C. A., Economou, E. N., & Ngai, K. L. (1974). Surface polaritons in a circularly cylindrical interface: Surface plasmons. Physical Review B, 10(8), 3038-3051. doi:10.1103/physrevb.10.3038Schider, G., Krenn, J. R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F. R., … Boreman, G. (2003). Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 68(15). doi:10.1103/physrevb.68.155427Neubrech, F., Kolb, T., Lovrincic, R., Fahsold, G., Pucci, A., Aizpurua, J., … Karim, S. (2006). Resonances of individual metal nanowires in the infrared. Applied Physics Letters, 89(25), 253104. doi:10.1063/1.2405873Zhou, J., Koschny, T., Kafesaki, M., Economou, E. N., Pendry, J. B., & Soukoulis, C. M. (2005). Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies. Physical Review Letters, 95(22). doi:10.1103/physrevlett.95.223902Delgado, V., Sydoruk, O., Tatartschuk, E., Marqués, R., Freire, M. J., & Jelinek, L. (2009). Analytical circuit model for split ring resonators in the far infrared and optical frequency range. Metamaterials, 3(2), 57-62. doi:10.1016/j.metmat.2009.03.00

    Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

    Get PDF
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.007664. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance in the infrared regime, which results in highly sensitive sensing. Unlike usual experiments which are based on the functionalization of the metal surface, we functionalized here the silicon substrate. This silicon surface was modified chemically by buildup of an organosilane self-assembled monolayer (SAM) containing isocyanate as functional group. These groups allow for an easy surface regeneration by simple heating, thanks to the thermally reversible interaction isocyanate-analyte, which allows the cyclic use of the sensor. The technique showed a high sensitivity to surface binding events in gas and allowed the surface regeneration by heating of the sensor at 150°C. A relative wavelength shift ¿¿max/¿0 = 0.027 was obtained when the saturation level was reached. © 2011 Optical Society of America.Financial support by the Spanish MICINN under contracts CONSOLIDER EMET (CSD2008-00066) and TEC2008-06871-C02-02 and European Commission FP7 under the FET-Open project TAILPHOX 233833 is gratefully acknowledged.Rodríguez Cantó, PJ.; Martínez Marco, ML.; Rodríguez Fortuño, FJ.; Tomás Navarro, B.; Ortuño Molinero, R.; Peransi Llopis, SM.; Martínez Abietar, AJ. (2011). Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Optics Express. 19(8):7664-7672. https://doi.org/10.1364/OE.19.00766476647672198Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. (2001). Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 13(19), 1501-1505. doi:10.1002/1521-4095(200110)13:193.0.co;2-zLink, S., & El-Sayed, M. A. (2003). OPTICALPROPERTIES ANDULTRAFASTDYNAMICS OFMETALLICNANOCRYSTALS. Annual Review of Physical Chemistry, 54(1), 331-366. doi:10.1146/annurev.physchem.54.011002.103759Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014Miura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-xLee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180aStewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126nYin, L., Liu, Y., Ke, Z., & Yin, J. (2009). Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer. European Polymer Journal, 45(1), 191-198. doi:10.1016/j.eurpolymj.2008.10.016Suyama, K., Iriyama, H., Shirai, M., & Tsunooka, M. (2001). Curing Systems Using Photolysis of Carbomoyloxyimino Groups and Themally Regenerated Isocyanate Groups. Journal of Photopolymer Science and Technology, 14(2), 155-158. doi:10.2494/photopolymer.14.155Patskovsky, S., Kabashin, A. V., Meunier, M., & Luong, J. H. T. (2004). Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical, 97(2-3), 409-414. doi:10.1016/j.snb.2003.09.023Shelton, D. J., Peters, D. W., Sinclair, M. B., Brener, I., Warne, L. K., Basilio, L. I., … Boreman, G. D. (2010). Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials. Optics Express, 18(2), 1085. doi:10.1364/oe.18.001085Bhalla, V., Carrara, S., Stagni, C., & Samorì, B. (2010). Chip cleaning and regeneration for electrochemical sensor arrays. Thin Solid Films, 518(12), 3360-3366. doi:10.1016/j.tsf.2009.10.022Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312aSpencer, M. J. S., & Nyberg, G. L. (2004). Adsorption of silane and methylsilane on gold surfaces. Surface Science, 573(2), 151-168. doi:10.1016/j.susc.2004.08.043Gradess, R., Abargues, R., Habbou, A., Canet-Ferrer, J., Pedrueza, E., Russell, A., … Martínez-Pastor, J. P. (2009). Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 19(48), 9233. doi:10.1039/b910020bBrolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621MAURIZ, E., CALLE, A., MONTOYA, A., & LECHUGA, L. (2006). Determination of environmental organic pollutants with a portable optical immunosensor. Talanta, 69(2), 359-364. doi:10.1016/j.talanta.2005.09.049Yu, Q., Chen, S., Taylor, A. D., Homola, J., Hock, B., & Jiang, S. (2005). Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 107(1), 193-201. doi:10.1016/j.snb.2004.10.064Cui, X. (2003). Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta, 60(1), 53-61. doi:10.1016/s0039-9140(03)00043-

    Extraordinary Transmission Filtering Structures based on Plasmonic Metamaterials

    Full text link
    Esta tesis trata sobre el fascinante fenómeno de la transmisión extraordinaria a través de láminas metálicas nonoestructuradas periódicamente con aperturas al corte. Un efecto relacionado con la excitación de un tipo de ondas superficiales como son los plasmones de superficie. Además, en aquellas estructuras formadas por el apilamiento de dos o más láminas metálicas se consiguen nuevas funcionalidades, como magnetismo artificial que da lugar a resonancias magnéticas y por tanto la posibilidad de obtener un índice de refracción negativo.Mediante un estudio teórico y numérico se ha comprobado que este tipo de respuesta magnética efectiva se debe a la excitación de resonancias plasmónicas internas en la estructura. Obteniéndose, bajo incidencia normal, un índice de refracción efectivo negativo en la dirección de propagación en el caso de que dichas resonancias se produzcan en zonas del espectro donde se obtenga la permitividad negativa, conectando el mundo de la plasmónica con el de los metamateriales. Uno de los principales objetivos en el diseño de metamateriales es obtener un índice de refracción negativo en un gran ancho de banda. Sin embargo, este objetivo suele ser complicado de conseguier al basar los diseños en fenómenos resonantes. Es por ello que en esta tesis se ha propuesto un diseño basado en el apilamiento de estructuras fishnet con diferentes grosores de dieléctrico para conseguir aumentar el ancho de banda en el cual se consigue un índice negativo. Básicamente, la obtención de tal efecto se basa en la excitación de resonancias plasmónicas a distintas frecuencias al estar formada la celda unidad por difentes grososres de dieléctrico. La hibridación que se produce entre dichas resonancias permite aumentar el ancho de banda con índice negativo. Aunque la transmisión extraordinaria esta principalmente relacionada con excitación de plasmones de superficie, los resultados mostrados en la tesis demuestran que para el caso de láminas metálicas rodeadas por dieléctricos también se consigue transmisión extraordinaria debido a la adaptación de la luz incidente a los modos soportados por los medios dieléctricos siempre y cuando el metal se encuentre estructurado periódicamente.Ortuño Molinero, R. (2012). Extraordinary Transmission Filtering Structures based on Plasmonic Metamaterials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14639Palanci

    Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses

    Full text link
    Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.In this work, we report the design, fabrication, and characterization of gold nanocrosses for chemosensing purposes. The nanocrosses are designed to exhibit a localized surface plasmon resonance which is very sensitive to refractive index changes in the surrounding medium, resulting in sensitivity values of around 500-700 nm per refractive index unit at wavelengths around 1.4 ¿m. We experimentally demonstrate the functionalization of the gold nanocrosses and the successful sensing of chemical monolayers. © 2011 American Institute of Physics.Financial support by the Spanish MICINN under contracts CONSOLIDER EMET CSD2008-00066 and TEC2008-06871-C02-02 is gratefully acknowledged.Rodríguez Fortuño, FJ.; Martínez Marco, ML.; Tomás Navarro, B.; Ortuño Molinero, R.; Martí Sendra, J.; Martínez Abietar, AJ.; Rodríguez Cantó, PJ. (2011). Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters. 98:133118-133118. https://doi.org/10.1063/1.3558916S13311813311898Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539. doi:10.1007/s00216-003-2101-0Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126nWillets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014Lee, K.-S., & El-Sayed, M. A. (2006). Gold and Silver Nanoparticles in Sensing and Imaging:  Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. The Journal of Physical Chemistry B, 110(39), 19220-19225. doi:10.1021/jp062536yMiura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-xLee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180aMcFarland, A. D., & Van Duyne, R. P. (2003). Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters, 3(8), 1057-1062. doi:10.1021/nl034372sKelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107(3), 668-677. doi:10.1021/jp026731yBrolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621Ramanathan, T., Fisher, F. T., Ruoff, R. S., & Brinson, L. C. (2005). Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems. Chemistry of Materials, 17(6), 1290-1295. doi:10.1021/cm048357
    corecore